
Spreadsheets and Dataframes

There's order in disorder: A tale of three data models

Some History:

Order in a relational database

WINDOW functions

Codd's relational model: 1969; System R: 1974
from the "database" community

Spreadsheets: first prototype: 1969; first implementation for microcomputers: 1979
from the accounting community
ledgers that present the results of calculations along with data

Dataframes: first included in S: 1990 -> R -> Python: 2008
from the statistics community
generalizing from matrices (homogeneous) to heterogeneous types

one observation per row, one variable per column

ORDER BY: typically done "at the end"

Implicitly done for certain types of operators, e.g., GROUP BY, and by certain physical
implementations, e.g., sort-merge join -- recall interesting orders for Selinger's
dynamic programming algorithm
WINDOW functions

Only introduced in SQL as part of SQL:2003 standard

Rarely taught in database classes, because it is so new
Provides a way to operate on order as a first-class citizen

Look up "nearby" rows, based on some grouping and ordering

But you don't need to "squish" down to a single value per group

Central to many analytics tasks
SELECT salary, AVERAGE (salary) OVER () FROM employees;

SELECT salary, RANK () OVER (PARTITION BY dept ORDER BY salary) FROM
employees

This sort of stuff is very natural in spreadsheets

Other reasons why order helps:

SELECT sensorid, value, AVERAGE (value) OVER (PARTITION BY sensor
ORDER BY time ROWS 5 PRECEDING AND CURRENT ROW) AS previous_average

can also do cumulative sum, etc.
Conceptual flow: partition -> order -> window -> aggregate

A blocking operation much like GROUP BY & SORT

Once you impose an order, can perform windowed aggregation, e.g., Bi = SUM
(A1: Ai) for cumulative sum

You can refer to data by position
Order often has meaning, especially when you're presenting results of analysis

Can inspect results in order as operations are performed (debugging)

Ways order doesn't help:

Let's talk about spreadsheets

Constraint that needs to be met after every operation

Maintaining this is expensive
Often leads to tight coupling between logical and physical representations
Brittle, buggy: >50% of spreadsheets contains mistakes

e.g., if your formula is referencing the first 28 rows, but doing so because that
corresponds to all of February, now, when you have a leap year, that formula is no
longer correct

Super popular, 1B users!
In 2015, when we started this work, largely not an interesting topic of study

Bakke et al. SIGMOD 2016: allowing hierarchical representations within spreadsheets,
admitting GROUP BY-like expressions
Joe and colleagues did some work on spreadsheets in 1999 "Scalable Spreadsheets
for Interactive Data Analysis.", workshop paper.

Spreadsheets was more "in the background" rather than the foreground

Emphasis ended up being
Online aggregation for presenting early results of aggregates, approximately
Online dynamic reordering for prioritizing the generation of what the user may
be currently seeing (coupled with something like eddies)

Mappings between spreadsheets and databases
XLOOKUP - a kind of foreign key join

formulae = materialized views
typical aggregate functions, plus those with IF, e.g., SUMIF - much like SUM + a
WHERE clause

A brief HCI aside: direct manipulation

But spreadsheets don't actually scale (2020 paper)

Our goal in the ICDE 2018 paper was twofold:

Goal A: Building a more scalable spreadsheet boils down to representation and access

Representation question:

don't go beyond 1M rows

operate entirely in main-memory
no real query/storage optimization

each formula evaluated one at a time, including XLOOKUP (a kind of foreign key
joins)

no subexpression elimination
no indexes
no careful layout of data

I like to joke that spreadsheets invented the n^2 log n sort. If you aren't careful.

build a more scalable spreadsheet

build a spreadsheet frontend to a database -> not as interesting

How do you efficiently represent spreadsheets?
The paper does this by identifying tabular and non-tabular regions:

tabular regions, store in some row or columnar format
non-tabular regions, store in k-v format

Access question:

But: barely scratching the surface. Lots more to be done, from our group

Let's talk about dataframes

Gains in storage compared to just tabular or just non-tabular (which is what is done
right now), but also reduced formula computation costs, because related data is
present "close by"

algorithm that recursively divides the spreadsheet, much like KD trees

How do you efficiently maintain position during updates, e.g., adding/deleting rows?
First alternative: store position directly

downside: cascading update O(n)
OTOH can use a standard B+tree on position for locating kth record O(log n)

Second alternative: monotonically increasing proxies 0, 10, 20, 30, ...
no cascading updates (to a limited extent)
downside: mappings are lost, so O(n) lookups

Counted B+ trees
Each node also stores the count of nodes below it
Updates and lookups in O(log n)

we built an asynchronous execution engine for spreadsheet formulae SIGMOD 2019
compression for spreadsheet formula networks ICDE 2023
frontend: very hard to make sense of large spreadsheets VLDB 2021

central to data analysis and data science
pandas often cited as the reason for python's popularity
called the most important tool in data science

used for everything ranging from data cleaning to even primitive ML, and even
more especially in combination with ML libraries

500+ functions, allowing you to do anything you want to your data
Lots of redundancy: many ways to do the same thing (1700x change)

We identified that pandas was being used to operate on very large datasets and was
breaking down

Much like spreadsheets, often would OOM

Very inefficient w/ memory would, make multiple copies

Let's talk about the 2020 paper that crystallized the dataframe data model and algebra

Next, how do we think about parallelizing the evaluation of dataframe operators?

Each operator executed by itself, in entirety, no optimization

Eager metadata maintenance

So we started building Modin, a parallel dataframe system, architected as a "drop-in"
replacement for pandas

Here, the papers came after the system was already gaining traction in the OSS
community
Started a company, which was sold to Snowflake
Now has 1M+ downloads a month

Lots of math in the paper, but at the highest level, a dataframe is a four-tuple (Array,
Row Labels, Column Labels, Types)
Unlike relations:

ordered along both rows and columns

rows are named
types can be unspecified after operations, and may need to be induced (as in
spreadsheets)

From an algebraic standpoint
output could have arbitrary schema that depended on data

e.g. one-hot encoding or pivot, or dropNA along columns
simply a no-no for

data was equivalent to metadata, so we could move information from the labels to
the data and vice-versa

We also boiled all the operators down to a small number of operators (we refined this
in the second 2021 paper), that included

ordered versions of relational operators along both rows and columns
e.g., filter along columns

to/from labels

transpose

can we apply the same ideas from parallel databases, e.g., breaking an operation on
an entire relation into those on partitions?

two twists:
order and access

Paper also discusses ways to lazily maintain metadata

Vision paper outlines a bunch of open, unaddressed questions - still yet to be done, much
like spreadsheets

--
If time, precision, expressiveness, usability tradeoff

Takeaways:

SQL
NL2SQL

Keyword search in databases
spreadsheets
query builders

query by example: microsoft access

two other popular data "rectangular" models, beyond relational
both center on order, and also admit disorder - loose typing, structure

both worthy of study, barely scratching the surface of each

